Exploring multi-dimensional sequential patterns across multi-dimensional multi-sequence databases
نویسندگان
چکیده
Existing multi-dimensional sequential pattern mining methods only discover multi-dimensional sequential pattern in databases involving one sequential dimension. Since multi-dimensional sequential patterns may exist in databases containing more than one sequential dimension, in this paper, we present algorithm PSeq-MIDim for mining multi-dimensional sequential patterns from multiple sequential dimensions with multi-dimensional information, which makes up multi-dimensional multisequence databases. PSeq-MIDim applies PSeq to mine sequential patterns from multiple sequential dimensions, then forms the corresponding projected multi-dimensional database for each sequential pattern, and uses MIDim to mine multi-dimensional patterns within projected databases. PSeq performs sequential pattern mining from one sequential dimension, and then propagates the mined sequential patterns to other sequential dimension. Furthermore, the mined sequential patterns are represented as a lattice structure to provide guidelines for mining sequential patterns across multiple sequential dimensions. MIDim, which scans projected database only one time, makes the best of prefix-index technique for focused searching and finds multi-dimensional patterns rapidly. The experimental results show that PSeq-MIDim is efficient to find multi-dimensional sequential patterns from multi-dimensional multi-sequence databases.
منابع مشابه
Multi-Dimensional Relational Sequence Mining
The issue addressed in this paper concerns the discovery of frequent multi-dimensional patterns from relational sequences. The great variety of applications of sequential pattern mining, such as user profiling, medicine, local weather forecast and bioinformatics, makes this problem one of the central topics in data mining. Nevertheless, sequential information may concern data on multiple dimens...
متن کاملOptimization of Dimensional Deviations in Wax Patterns for Investment Casting
Investment casting is a versatile manufacturing process to produce high quality parts with high dimensional accuracy. The process begins with the manufacture of wax patterns. The dimensional accuracy of the model affects the quality of the finished part. The present study investigated the control and optimization of dimensional deviations in wax patterns. A mold for an H-shaped wax pattern was ...
متن کاملConstructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations
In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...
متن کاملSequential Pattern Mining by Pattern-Growth: Principles and Extensions
Sequential pattern mining is an important data mining problem with broad applications. However, it is also a challenging problem since the mining may have to generate or examine a combinatorially explosive number of intermediate subsequences. Recent studies have developed two major classes of sequential pattern mining methods: (1) a candidate generation-and-test approach, represented by (i) GSP...
متن کاملیک روش مبتنی بر خوشهبندی سلسلهمراتبی تقسیمکننده جهت شاخصگذاری اطلاعات تصویری
It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011